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Abstract 

 

Dual axis trackers employing azimuth and elevation rotations are common in the field 

of photovoltaic (PV) energy generation. Accurate sun-tracking algorithms are widely 

available. However, a steering algorithm has not been available to accurately point 

the tracker away from the sun such that a vector projection of the sun beam onto the 

tracker face falls along a desired path relative to the tracker face. We have developed 

an algorithm which produces the appropriate azimuth and elevation angles for a dual 

axis tracker when given the sun position, desired angle of incidence, and the desired 

projection of the sun beam onto the tracker face. Development of this algorithm was 

inspired by the need to accurately steer a tracker to desired sun-relative positions in 

order to better characterize the electro-optical properties of PV and CPV modules. 
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NOMENCLATURE 
 

AOI  Angle of incidence 

CPV  Concentrating photovoltaic 

DOE Department of Energy 

LCPV Low concentration photovoltaic 

PV Photovoltaic 

SNL Sandia National Laboratories 

𝜃𝑆𝐴 Sun azimuth 

𝜃𝑆𝐸  Sun elevation 

𝜃𝑇𝐴 Tracker azimuth rotation 

𝜃𝑇𝐸  Tracker elevation rotation 

𝛼 Angle of incidence, AOI 

𝛽 Angle of incidence direction on tracker face 

𝑥̂ Reference unit vector for topocentric coordinate system, points east 

𝑦̂ Reference unit vector for topocentric coordinate system, points north 

𝑧̂ Reference unit vector for topocentric coordinate system, points up (toward zenith) 

𝑆 Sun pointing vector expressed in topocentric coordinate system 

𝑥𝑚 Unit vector in tracker plane, orthogonal to 𝑦𝑚 and 𝑧𝑚 

𝑦𝑚 Unit vector normal to tracker plane, orthogonal to 𝑥𝑚 and 𝑧𝑚 

𝑧𝑚 Unit vector in tracker plane towards top of tracker, orthogonal to 𝑦𝑚 and 𝑥𝑚 
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1.  INTRODUCTION 
 

 

Dual axis trackers are common in the photovoltaic (PV) and concentrating photovoltaic (CPV) 

industries as a method of pointing at the sun to maximize solar energy collection. They are also 

common in laboratories which test and characterize PV and CPV modules as a method of 

controlling the solar radiation incident upon the device under test. Many of the dual axis trackers 

in use are of the azimuth/elevation type. 

 

Sandia National Laboratories uses a dual axis azimuth/elevation tracker when characterizing the 

electro-optical response of a module to changes in the solar angle of incidence (AOI), i.e., the 

angle between the sun vector and the module’s normal vector. Short-circuit current is measured 

as the module is steered away from an orientation normal to the sun; the changes in short-circuit 

current over a range of AOI can then be related to the fraction of sunlight reflected away from 

the module rather than being captured by the module [1]. For CPV, it may be desirable to 

measure performance aspects other than short-circuit current (e.g., maximum power or current at 

maximum power). 

 

Most flat-plate PV modules exhibit isotropic response to AOI, that is, their response is the same 

regardless of the orientation of the sun beam relative to their surface. Thus, AOI alone was 

sufficient to parameterize the electrical response of most flat-plate PV modules. However, in 

some modules, especially low concentration PV modules, performance depends on both the AOI 

and on the orientation of sun vector relative the module face. To characterize these anisotropic 

modules, we define one additional angle to describe sun orientation, and present an algorithm for 

pointing an azimuth/elevation tracker to a desired position described in terms of these two 

angles. 

 

1.1. Definitions 
 

Here, we define the terms and coordinate system used to describe sun position and tracker 

orientation. We generally use a topocentric coordinate system; that is, the frame of reference for 

celestial bodies for an observer on the Earth’s surface. We also introduce a tracker-relative 

coordinate system which is used to define AOI. 

 

1.1.1. Sun position 
 

We use a topocentric coordinate system (Figure 1) for describing the position of the sun in the 

sky. The solar elevation angle, 𝜃𝑆𝐸 , is the angle between the observer’s horizon and the sun, 

usually expressed in degrees, and is defined on the interval [-90°, 90°] (negative angles occur 

when the sun is below the observer’s horizon). At sunrise and sunset, the solar elevation angle is 

0°, and the solar elevation angle reaches a maximum at solar noon. The complement of the solar 

elevation angle is the solar zenith angle, 𝜃𝑆𝑍, which is defined as the angle between the sun and a 

vector pointed directly overhead.  

 

The solar azimuth angle,  𝜃𝑆𝐴, describes the direction of the sun as a bearing on the Earth’s 

surface. As a bearing, the azimuth angle is defined as the number of degrees clockwise from true 
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north and ranges over the interval [0°, 360°). When the sun is due north of the observer, the 

azimuth is 0°, when the sun is due east of the observer the azimuth is 90° (south = 180°, west = 

270°). 

 

 
 

Figure 1: Description of solar position angles from an observer on Earth's surface 

 

1.1.2. Tracker rotation 
 

Azimuth/elevation trackers have two axes of rotation: one axis rotates the tracker around a 

vertical axis through all possible azimuth angles and the other axis rotates the tracker face about 

a horizontal axis through all possible elevation angles. The azimuthal rotation axis allows the 

tracker to point the tracker face through a range of azimuth angles, 𝜃𝑇𝐴, defined in the same 

manner as sun position: degrees clockwise from north. While the azimuth rotation of the tracker 

is defined over the interval [0°, 360°) most trackers, including those at SNL, are limited to a 

smaller range. For example, SNL’s trackers are limited to azimuth angles between approximately 

60° (east northeast) and 300° (west northwest). 

 

A tracker’s elevation rotation axis allows the tracker to point the tracker face through a range of 

elevation angles. The tracker’s elevation angle, 𝜃𝑇𝐸 , is defined as the angle between the 

horizontal vector in the direction of the tracker azimuth, and the vector normal to the tracker’s 

face, with possible values in the interval (-180°, 180°]. This range, combined a possible range of 

[0°, 360°) range for tracker azimuth, means that the potential range of tracker pointing angles 
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covers all possible pointing directions twice. However, because the tracker lacks a third rotation 

axis (around the normal to the plane of the tracker face), the tracker face is oriented differently 

for the two possible orientations which point to the same direction. For example, a tracker at 

pointing angles (𝜃𝑇𝐴, 𝜃𝑇𝐸) = (100°, 0°) is pointing to the same celestial location as a tracker at 

pointing angles (280°, 180°), but the tracker face is inverted in the latter coordinates. Put another 

way, an arrow sketched onto the tracker face that points “up” (toward the sky) in the first set of 

pointing angles would point “down” (toward the ground) in the second set of pointing angles. As 

with azimuth angles, most azimuth/elevation trackers are mechanically limited in elevation angle 

to a range less than [-180°, 180°). The newest SNL research tracker (ATS 2) is limited to the 

elevation angle range [-10, 180]. Most trackers designed for solar energy collection are limited to 

elevation angle ranges approximately [5°, 90°] or less. 

 

Many solar energy applications refer to the “tilt angle” or “slope” of a PV module or system 

from a horizontal plane. We note that the tilt angle of a tracker face and the tracker elevation 

angle are not the same, but are related through equation 1. 

𝑻𝒊𝒍𝒕𝑨𝒏𝒈𝒍𝒆 =  |𝟗𝟎° − 𝜽𝑻𝑬| (1) 

 

1.1.3. Angle of incidence and angle of incidence direction 
 

Solar angle of incidence (AOI), denoted here by 𝛼, is the angle between the module’s normal 

vector and the vector pointing to the middle of the sun. We define 𝛼 over the interval [0, 90) so 

that the beam of the sun is always striking the face of the module. PV modules which are 

mounted on dual axis trackers are typically mounted in the plane of the tracking face. For 

maximum solar energy collection, the tracker face is pointed toward the sun throughout the day 

and the normal vector of the PV module points at the sun. However, in research applications the 

PV module may be pointed away from the sun over a range of AOI to characterize the module’s 

response to AOI.  

 

As mentioned earlier, we have found that modules with anisotropic response to AOI cannot be 

adequately characterized with AOI alone. Therefore, we introduce the angle of incidence 

direction (AOI direction), 𝛽, defined by the projection onto the tracker face of the vector from 

the sun to the tracker. We quantify 𝛽 over the interval [0, 360) in degrees counterclockwise from 

the line between the module’s center and the module’s “top” as illustrated in Figure 2. For 

example, consider the tracker pointing at an orientation (𝜃𝑇𝐴, 𝜃𝑇𝐸) of (0°, 0°), i.e., the tracker 

face is a plane perpendicular to the earth’s surface with the module’s “top” being up and module 

normal pointed north. Consider a coordinate system on the module’s face where 0° points “up” 

toward the zenith, 90° points east, 180° points down (toward Earth), and 270° points west. If a 

vector from the tracker face to the sun is projected (or “collapsed”) onto the tracker face, 𝛽 is the 

measure of the angle counterclockwise from 0° on the tracker face. Because the coordinate 

system is referenced to the tracker face, it moves relative to the earth as the tracker rotates. 
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Figure 2: (Top) An isometric view of a solar tracker with reference axes. The red line indicates 
the direction of the sun, the cone indicates all possible sun positions with the same AOI (𝜶) 

relative to the tracker. (Bottom) Direct view of the face of the tracker with 𝜷 identified. 
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2.  CALCULATION OF VARIABLES 
 

 

2.1. Calculating 𝜶 and 𝜷 given sun and tracker positions 
 

Calculation of 𝛼 and 𝛽 from 𝜃𝑆𝐸 , 𝜃𝑆𝐴, 𝜃𝑇𝐴, and 𝜃𝑇𝐸  is relatively straightforward. In a topocentric, 

right-handed, Cartesian coordinate system with unit vectors 𝑥̂, 𝑦̂, and 𝑧̂ where:  

𝒙̂ =  [
𝟏
𝟎
𝟎

] = 𝐞𝐚𝐬𝐭 (2) 

𝒚̂ =  [
𝟎
𝟏
𝟎

] = 𝐧𝐨𝐫𝐭𝐡 (3) 

𝒛̂ =  [
𝟎
𝟎
𝟏

] = 𝐮𝐩 (4) 

The unit vector S pointing to the sun in the same topocentric coordinate system is: 

𝑺 = [

𝐬𝐢𝐧( 𝜽𝑺𝑨) × 𝐜𝐨𝐬(𝜽𝑺𝑬)

𝐜𝐨𝐬( 𝜽𝑺𝑨) × 𝐜𝐨𝐬(𝜽𝑺𝑬)

𝐬𝐢𝐧(𝜽𝑺𝑬)
] (5) 

We also define a right-handed Cartesian coordinate system relative to the tracker face with unit 

vectors 𝑥𝑚, 𝑦𝑚, and 𝑧𝑚. The tracker face is a plane containing 𝑥𝑚 and 𝑧𝑚, and the tracker 

normal vector is 𝑦𝑚. The vector 𝑧𝑚 points from the tracker center to the tracker “top”; the vector 

𝑥𝑚 is 90° counterclockwise from 𝑧𝑚. Relative to the topocentric coordinate system, the vectors 

defining the tracker-relative coordinate system will rotate as the tracker rotates. After a tracker 

rotation in azimuth and/or elevation, the rotated tracker-relative unit vectors can be expressed in 

the topocentric coordinate system: 

𝒙′𝒎 =  [
𝐜𝐨𝐬(𝜽𝑻𝑨)

−𝐬𝐢𝐧(𝜽𝑻𝑨)
𝟎

] (6) 

𝒚′𝒎 =  [

𝐬𝐢𝐧 𝜽𝑻𝑨 × 𝐜𝐨𝐬 𝜽𝑻𝑬

𝐜𝐨𝐬 𝜽𝑻𝑨 × 𝐜𝐨𝐬 𝜽𝑻𝑬

𝐬𝐢𝐧 𝜽𝑻𝑬

] (7) 

𝒛′𝒎 =  [

− 𝐬𝐢𝐧 𝜽𝑻𝑬 × 𝐬𝐢𝐧 𝜽𝑻𝑨

− 𝐬𝐢𝐧 𝜽𝑻𝑬 × 𝐜𝐨𝐬 𝜽𝑻𝑨

𝐜𝐨𝐬 𝜽𝑻𝑬

] (8) 
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As S is a unit vector pointing to the sun, and 𝑦′𝑚 is a unit vector describing the rotated tracker 

normal in the same topocentric coordinates, the angle of incidence 𝛼 may be found easily using 

equation 9. 

𝐜𝐨𝐬(𝛂) = 𝑺 ∙ 𝒚′𝒎 = 𝐬𝐢𝐧 𝜽𝑺𝑬 × 𝐬𝐢𝐧 𝜽𝑻𝑬 + 𝐜𝐨𝐬 𝜽𝑺𝑬 × 𝐜𝐨𝐬 𝜽𝑻𝑬 × 𝐜𝐨𝐬(𝜽𝑺𝑨 − 𝜽𝑻𝑨) (9) 

where ∙ is the usual dot product. 

 

By projecting the sun vector S onto the rotated tracker surface, defined by 𝑥′𝑚 and 𝑧′𝑚, we 

obtain the angle of incidence direction 𝛽 as shown in equations 10 through 12.  

(𝑺 ∙ 𝒙′𝒎) = 𝐜𝐨𝐬 𝜽𝑺𝑬 × 𝐜𝐨𝐬 𝜽𝑻𝑨 × 𝐬𝐢𝐧 𝜽𝑺𝑨 − 𝐜𝐨𝐬 𝜽𝑺𝑬 × 𝐜𝐨𝐬 𝜽𝑺𝑨 × 𝐬𝐢𝐧 𝜽𝑻𝑨 (10) 

(𝑺 ∙ 𝒛′𝒎) = 𝐜𝐨𝐬 𝜽𝑻𝑬 × 𝐬𝐢𝐧 𝜽𝑺𝑬 − 𝐬𝐢𝐧 𝜽𝑻𝑬 × 𝐜𝐨𝐬 𝜽𝑺𝑬 × 𝐜𝐨𝐬(𝜽𝑺𝑨 − 𝜽𝑻𝑨) (11) 

𝜷 = atan2[(𝑺 ∙ 𝒙′𝒎), (𝑺 ∙ 𝒛′𝒎)] (12) 

where atan2(y, x) is the four quadrant arctangent of  
𝑦

𝑥
; for example, atan2(2, -3) ≈ 146.3°. 

 

2.2. Calculating tracker position given sun position, 𝛂, and 𝛃 
 

The inverse problem, calculating the appropriate tracker rotations 𝜃𝑇𝐴 and 𝜃𝑇𝐸  to achieve desired 

𝛼 and 𝛽, given 𝜃𝑆𝐸  and 𝜃𝑆𝐴, is considerably more difficult and in fact may have more than one 

solution, or no solution. For example, if the sun is south at 45° elevation (i.e., θSE = 45°, and 

𝜃𝑆𝐴 = 180°) and it is desired that 𝛼 = 45° and 𝛽 = 0° (i.e., AOI = 45° and AOI direction is 

towards the top of the tracker) then two solutions exist: 𝜃𝑇𝐴 = 180° and 𝜃𝑇𝐸 = 0° (i.e., the 

tracker normal is pointed south at the horizon and the tracker top is up), and 𝜃𝑇𝐴 = 0° and 

𝜃𝑇𝐸 = 90° (i.e., the tracker normal is pointed straight upwards and the tracker top is pointed 

south). We calculate 𝜃𝑇𝐴 and 𝜃𝑇𝐸  using the following algorithm that accommodates cases where 

more than one solution, or no solution, exists. Because 𝜃𝑇𝐴 and 𝜃𝑇𝐸  are dependent upon sun 

position, the algorithm must be continually performed to accommodate the sun’s movement 

through the sky (relative to the topocentric observer). 

 

Generally, 𝜃𝑇𝐴 and 𝜃𝑇𝐸  may be found by simultaneously solving equations 9 and 12. In order to 

simplify the resulting expressions we make the following substitutions: 

𝑪 =  𝐜𝐨𝐬 𝜽𝑺𝑬 (13) 

𝑵 =  𝐬𝐢𝐧 𝜽𝑺𝑬 (14) 

𝑫 = 𝐭𝐚𝐧 𝜷 (15) 

𝑨 = 𝐜𝐨𝐬 𝜶 (16) 
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𝑼 = 𝜽𝑺𝑨 − 𝜽𝑻𝑨 (17) 

and obtain from equations 9 and 12 two equations in the two unknowns 𝜃𝑇𝐸  and 𝑈. 

 

𝑨 = 𝑵 × 𝐬𝐢𝐧 𝜽𝑻𝑬 + 𝑪 × 𝐜𝐨𝐬 𝜽𝑻𝑬 × 𝐜𝐨𝐬 𝑼 (18) 

𝑪 × 𝐬𝐢𝐧 𝑼 = 𝑵 × 𝑫 × 𝐜𝐨𝐬 𝜽𝑻𝑬 − 𝑪 × 𝑫 × 𝐬𝐢𝐧 𝜽𝑻𝑬 × 𝐜𝐨𝐬 𝑼 (19) 

 

The solutions to equations 18 and 19 depend on the value of 𝛽. 

 

2.2.1. General case when 𝑡𝑎𝑛 𝛽 is defined 
 

When the value for 𝐷 = tan 𝛽 is defined (i.e., 𝛽 ≠ 90° and 𝛽 ≠ 270°), equations 18 and 19 

admit a general solution for 𝜃𝑇𝐸  and 𝜃𝑇𝐴. Solving equations 18 and 19 for 𝜃𝑇𝐸 and 𝑈 (using 

Maple™) then applying equation 17 yields the following: 

𝜽𝑻𝑬 =  𝐚𝐭𝐚𝐧𝟐(𝑭, 𝑹) (20) 

𝜽𝑻𝑨 = 𝜽𝑺𝑨 − 𝑼 = 𝜽𝑺𝑨 −  𝐚𝐭𝐚𝐧𝟐(𝐆, 𝐇) (21) 

where  

𝑭 =
𝑫𝟐𝑨𝟐+𝑫𝟐𝑵𝟐+𝑨𝟐+𝑵𝟐−𝑹𝟐(𝑫𝟐𝑨𝟐+𝟏)

𝟐𝑨𝑵(𝑫𝟐+𝟏)
 (22) 

𝑮 =
𝑫𝟑𝑵𝟐−𝑫𝟑𝑨𝟐−𝑫𝑨𝟐+𝑫𝑵𝟐+𝑹𝟐(𝑫𝟑𝑨𝟐+𝑫)

(𝑫𝟐+𝟏)𝑪𝑵𝑹
 (23) 

𝑯 =
𝑨𝟐+𝑫𝟐𝑨𝟐−𝑵𝟐−𝑫𝟐𝑵𝟐+𝑹𝟐(𝑫𝟐𝑨𝟐+𝟏)

(𝑫𝟐+𝟏)𝑪𝑨𝑹
 (24) 

In equations 20 through 24, 𝑅 is a root of the 4
th

 order polynomial: 

a𝑤4 + b𝑤2 + c = 0 (25) 

where  

a = (𝐷2𝐴2 + 1)2 (26) 

b = −2(𝐷2 + 1)(𝐴4𝐷2 − 𝐴2𝐷2𝑁2 − 2𝐴2𝑁2 + 𝐴2 + 𝑁2) (27) 

c = (𝐷2 + 1)2(𝐴2 − 𝑁2)2 (28) 
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The polynomial in equation 25 admits 0, 2, or 4 real solutions (counting repeated roots). Because 

equation 25 is quadratic in form, we can classify the roots, and the solutions 𝜃𝑇𝐸  and 𝜃𝑇𝐴, in 

terms of the discriminant, b2 − 4ac.  

 

Case 1: 𝐛𝟐 − 𝟒𝐚𝐜 < 𝟎 
 

When b2 − 4ac < 0, there are no real roots 𝑅 and thus no possible solution for 𝜃𝑇𝐸  and 𝜃𝑇𝐴 

given the sun position and the desired values of 𝛼 and 𝛽.  

 

Case 2: 𝐛𝟐 − 𝟒𝐚𝐜 ≥ 𝟎 
 

When b2 − 4ac ≥ 0 there are either two or four real roots 𝑅 counting repeated values: 

{+√−𝐛+√𝐛𝟐−𝟒𝐚𝐜

𝟐𝐚
, −√−𝐛+√𝐛𝟐−𝟒𝐚𝐜

𝟐𝐚
, +√−𝐛−√𝐛𝟐−𝟒𝐚𝐜

𝟐𝐚
, −√−𝐛−√𝐛𝟐−𝟒𝐚𝐜

𝟐𝐚
} (29) 

However, two of the possible solutions for 𝜃𝑇𝐸  and 𝜃𝑇𝐴are extraneous; we denote the values of 𝑅 

which correspond to the two actual solutions as 

𝑹𝟏 = 𝝀𝟏
√−𝐛+√𝐛𝟐−𝟒𝐚𝐜

𝟐𝐚
 (30) 

𝑹𝟐 = 𝝀𝟐
√−𝐛−√𝐛𝟐−𝟒𝐚𝐜

𝟐𝐚
 (31) 

where 𝜆1 and 𝜆2 are either +1 or -1. 

 

Values for 𝜆1 and 𝜆2 are found by: 

𝝀𝟏 = 𝐬𝐠𝐧(𝐜𝐨𝐬 𝜷) (32) 

𝛌𝟐 = 𝐬𝐠𝐧(𝐜𝐨𝐬 𝜷) × 𝐬𝐠𝐧[− 𝐜𝐨𝐬(𝜶 + 𝜽𝑺𝑬)] (33) 

where sgn(x) denotes the sign or signum function of x. Equations 30 through 33 were developed 

empirically by examining all four possible solutions deriving from equation 29, and selecting the 

two solutions which lie in the desired AOI direction (upwards on the module, corresponding to 

cos 𝛽  ≥ 0, or downwards). The two extraneous solutions lie in the opposite directions. 

 

When 𝛼 + 𝜃𝑆𝐸 ≠ 90° it can be shown that 𝑅1 and 𝑅2 are distinct, and hence there are two 

different solutions for (𝜃𝑇𝐸 , 𝜃𝑇𝐴) both of which satisfy equations 18 and 19. Thus, when 

𝛼 + 𝜃𝑆𝐸 ≠ 90° and b2 − 4ac ≥ 0 there are two tracker pointing directions which provide the 

desired values for 𝛼 and 𝛽; one obtained with 𝑅 = 𝑅1, and a second obtained with 𝑅 = 𝑅2.  
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When 𝛼 + 𝜃𝑆𝐸 = 90°, 𝜆2 = 0 from equation 33, thus 𝑅2 = 0 also. For 𝑅 = 𝑅2 = 0 equations 23 

and 24 are indeterminate and therefore provide no solution for 𝜃𝑇𝐴. In this case, one solution 
(𝜃𝑇𝐸 , 𝜃𝑇𝐴) results from 𝑅 = 𝑅1 in equations 20 through 24, and a second solution is trivial: 

𝜃𝑇𝐸 = 90° (34) 

𝜃𝑇𝐴 = 𝛽 − 180° + 𝜃𝑆𝐴 (35) 

 

2.2.2. Special case when 𝑡𝑎𝑛 𝛽 is undefined 
 

When 𝛽 = 90 or 𝛽 = 270, the value for 𝐷 = tan 𝛽 is undefined. In these cases, a separate 

calculation path is implemented in order to find 𝜃𝑇𝐸  and 𝜃𝑇𝐴 from a desired 𝛼 and 𝛽, given 𝜃𝑆𝐸  

and 𝜃𝑆𝐴. When tan 𝛽 is undefined, it must be that the sun vector, 𝑆, is perpendicular to the vector 

𝑧′𝑚. From equation 9 and equation 11 we have the following system of equations in two 

unknowns, 𝜃𝑇𝐴 and 𝜃𝑇𝐸: 

𝟎 = (𝑺 ∙ 𝒛′𝒎) = 𝐜𝐨𝐬 𝜽𝑻𝑬 × 𝐬𝐢𝐧 𝜽𝑺𝑬 − 𝐬𝐢𝐧 𝜽𝑻𝑬 × 𝐜𝐨𝐬 𝜽𝑺𝑬 × 𝐜𝐨𝐬(𝜽𝑺𝑨 − 𝜽𝑻𝑨) (36) 

𝐜𝐨𝐬 𝜶 = 𝑺 ∙ 𝒚′𝒎 = 𝐬𝐢𝐧 𝜽𝑺𝑬 × 𝐬𝐢𝐧 𝜽𝑻𝑬 + 𝐜𝐨𝐬 𝜽𝑺𝑬 × 𝐜𝐨𝐬 𝜽𝑻𝑬 × 𝐜𝐨𝐬(𝜽𝑺𝑨 − 𝜽𝑻𝑨) (37) 

Eliminating cos(𝜃𝑆𝐴 − 𝜃𝑇𝐴) from equations 36 and 37 obtains 

𝐬𝐢𝐧 𝜽𝑻𝑬 × 𝐜𝐨𝐬 𝜶 = 𝐬𝐢𝐧 𝜽𝑺𝑬 (38) 

Solutions to equation 38 depend on the value of 𝛼 + 𝜃𝑆𝐸 . 

 

2.2.2.1. 𝜷 = 𝟗𝟎 or 𝜷 = 𝟐𝟕𝟎 and 𝜶 + 𝜽𝑺𝑬 > 𝟗𝟎° 
 

If 𝛼 + 𝜃𝑆𝐸 > 90° then 0 > cos(𝛼 + 𝜃𝑆𝐸) = cos2 𝛼 − sin2 𝜃𝑆𝐸 ; because both 0 < 𝛼 < 90° and 

0 < 𝜃𝑆𝐸 ≤ 90° it must be that sin 𝜃𝑆𝐸 > cos 𝛼. Substituting into equation 38 we obtain  

𝐬𝐢𝐧 𝜽𝑺𝑬 = 𝐬𝐢𝐧 𝜽𝑻𝑬 × 𝐜𝐨𝐬 𝜶 < 𝐬𝐢𝐧 𝜽𝑻𝑬 × 𝐬𝐢𝐧 𝜽𝑺𝑬 (39) 

which leads to sin 𝜃𝑇𝐸 > 1. Consequently, for cases where 𝛽 = 90 or 𝛽 = 270 and 𝛼 + 𝜃𝑆𝐸 >
90°, there are no solutions. That is, no values of 𝜃𝑇𝐸  and 𝜃𝑇𝐴 exist to give the desired 𝛼 and 𝛽. 

 

2.2.2.2. 𝜷 = 𝟗𝟎 or 𝜷 = 𝟐𝟕𝟎 and 𝜶 + 𝜽𝑺𝑬 = 𝟗𝟎° 
 

If 𝛽 = 90 or 𝛽 = 270 and 𝛼 + 𝜃𝑆𝐸 = 90°, then cos 𝛼 = cos(90° − 𝜃𝑆𝐸) = sin 𝜃𝑆𝐸 , which in 

equation 38 implies sin 𝜃𝑇𝐸 = 1. There exists only one solution as the tracker must be rotated to 

point at the zenith:  

𝜽𝑻𝑬 =  𝟗𝟎° (40) 
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𝜽𝑻𝑨 = 𝜷 − 𝟏𝟖𝟎° + 𝜽𝑺𝑨 (41) 

2.2.2.3. 𝜷 = 𝟗𝟎 or 𝜷 = 𝟐𝟕𝟎 and 𝜶 + 𝜽𝑺𝑬 < 𝟗𝟎° 
 

If 𝛽 = 90 or 𝛽 = 270 and 𝛼 + 𝜃𝑆𝐸 < 90°, there exist two solutions. The first solution allows the 

tracker to remain “upright”, that is, cos 𝜃𝑇𝐸 ≥ 0, while the second forces the tracker to be 

“upside down”. Both solutions for 𝜃𝑇𝐸 follow from solving equation 38. Because 𝛼 < 90° − 𝜃𝑆𝐸  

and both 𝜃𝑆𝐸 < 90°  and 𝛼 < 90°, it follows that sin 𝜃𝑆𝐸 < sin(90° − 𝛼) = cos 𝛼, thus equation 

38 admits two solutions: one in Quadrant I or IV (equation 42) 

𝜽𝑻𝑬 = 𝐬𝐢𝐧−𝟏 (
𝐬𝐢𝐧 𝜽𝑻𝑬

𝐜𝐨𝐬 𝜶
) =  𝐬𝐢𝐧−𝟏 (

𝑵

𝑨
) (42) 

and a second solution in Quadrant II or III (equation 43): 

𝜽𝑻𝑬 =  𝟏𝟖𝟎° − 𝐬𝐢𝐧−𝟏 (
𝑵

𝑨
) (43) 

Note that equations 42 and 43 yield 𝜃𝑇𝐸  values between -90° and 270°. Because we define 𝜃𝑇𝐸  to 

values within the range (-180°, 180°], values in the range [180°, 270°] have 360° subtracted from 

them to be within the defined limits of 𝜃𝑇𝐸 .  

 

For each value of 𝜃𝑇𝐸  found by equations 42 or 43, the corresponding value for 𝜃𝑇𝐴 is then found 

from equation 44.  

𝜽𝑻𝑨 = 𝜽𝑺𝑨 − 𝐜𝐨𝐬−𝟏 (
𝑨×𝐜𝐨𝐬 𝜽𝑻𝑬

𝑪
) ∗ 𝐬𝐢𝐧 𝜷 (44) 

Equation 44 is obtained by eliminating terms involving 𝜃𝑇𝐸  from the system comprising 

equations 36 and 37.  

 

2.2.3. Special case when 𝑡𝑎𝑛 𝛽 = 0 and 𝜃𝑆𝐸 = 90 
 

When the sun is directly overhead, that is 𝜃𝑆𝐸 = 90, it is clear that only values of 𝛽 which may 

be accomplished by an azimuth/elevation tracker are 𝛽 = 0 or 𝛽 = 180. In the case of 𝜃𝑆𝐸 = 90 

and 𝛽 = 0 or 𝛽 = 180, the discriminant for equation 25 will be equal to 0. The equations 

provided in section 2.2.1 will determine a correct value for 𝜃𝑇𝐸; however, the equations will also 

provide a value for 𝜃𝑇𝐴. Under these conditions the value provided for 𝜃𝑇𝐴 is irrelevant, as 

rotations in the tracker azimuth do not result in changes of 𝛼 or 𝛽. 
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3.  PITFALLS WHEN COMPUTING VALUES NUMERICALLY 
 

 

For applications of testing solar energy products, a typical implementation of these equations 

will require some form of computer. We have found several possible pitfalls to avoid when 

numerically evaluating for the solutions of the equations above. Most of these pitfalls arise due 

to precision errors when computers manipulate numbers that are then used in checks for equality 

or in inequalities. 

 

3.1. Evaluating inverse cosine and inverse sine 
 

Evaluations of inverse trigonometric functions can sometimes be problematic, especially when 

the arguments of the inverse function contain approximations of trigonometric functions, such as 

in equations 9, 42, and 43. It is possible, in some situations, to have arguments to the inverse 

cosine and inverse sine functions which are slightly above 1 or below -1, in which case the 

inverse trigonometric function could be improperly evaluated. 

 

In these cases, it may be prudent to limit arguments to inverse sine and inverse cosine functions 

to the interval [-1, 1] prior to evaluation. 

 

3.2. Comparison for equality 
 

Some of the equations presented above involve evaluating for equalities or inequalities, for 

example, in section 2.2.2 there is a comparison to determine if 𝛼 + 𝜃𝑆𝐸 = 90°. In situations such 

as these, precision errors may again cause values which should be equivalent to evaluate as 

unequal. One possible solution to these precision errors is to evaluate if the values are nearly 

equivalent. For example, one may evaluate the equality comparison of 𝛼 + 𝜃𝑆𝐸 = 90 as |𝛼 +
𝜃𝑆𝐸 − 90| < 𝜀, where 𝜀 is a small positive number which is larger than the numeric precision of 

the calculation platform. 

 

3.3. Evaluating when 𝛉𝐒𝐄 is 0 
 

As stated previously, the sun elevation, 𝜃𝑆𝐸 , is defined over the interval [-90°, 90°], yet the 

equations listed above should only be used when 𝜃𝑆𝐸 > 0. If 𝜃𝑆𝐸  is 0, then sin(𝜃𝑆𝐸) = 𝑁 = 0 and 

equations 22 and 23 are undefined. It is therefore recommended to set θSE to a small positive 

value (perhaps 0.0001) for extremely low sun angles; while doing so introduces some small error 

in the tracker pointing solution, the deviation is probably insignificant compared to error in the 

apparent sun position caused by miscalculation of atmospheric refraction or to effects introduced 

by near shading or far shading. 
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4.  CONCLUSIONS 

 

Sandia National Laboratories has developed a system whereby the angle between direct beam 

sunlight and a terrestrial plane (e.g. a photovoltaic module, solar tracker face) may be described 

both by the angle of incidence and the direction which the beam falls on the plane. These values, 

denoted 𝛼 and 𝛽 respectively, are simple to calculate using equations 9 through 12 when given 

the sun position and the pointing direction of a 2-axis solar tracker employing azimuth and 

elevation rotation axes. 

 

It is more difficult, however, to determine the correct pointing angles, 𝜃𝑇𝐴 and 𝜃𝑇𝐸 , of an 

azimuth/elevation two-axis solar tracker that obtain a desired 𝛼 and 𝛽 for a given sun position. 

We describe an algorithm for determination of these tracker pointing angles when the sun is 

above the horizon. It is possible that there may be 0, 1, or 2 tracker orientations which provide 

the desired 𝛼 and 𝛽, and the choice of which orientation is best for any application is left to the 

implementer.  
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